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Retrieving snow surface reflectance is difficult in optical remote sensing. Hence, this letter evaluates
five surface reflectance models, including the Ross-Li, Roujean, Walthall, modified Rahman and Staylor
models, in terms of their capacities to capture snow reflectance signatures using ground measurements in
Antarctica. The biases of all the models are less than 0.0003 in both visible and near-infrared regions.
Moreover, with the exception of the Staylor model, all models have root-mean-square errors of around 0.02,
indicating that they can simulate the reflectance magnitude well. The R2 performances of the Ross-Li and
Roujean models are higher than those of the others, indicating that these two models can capture the
angle distribution of snow surface reflectance better.
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The bidirectional reflectance distribution function
(BRDF) characterizes the angular distribution of surface
reflection[1,2]. It plays an important role in performing
atmospheric correction, detecting land cover types, and
calculating other biophysical parameters[3]. However, the
retrieval of snow BRDF/albedo is always a difficult is-
sue in the application of remotely sensed information.
For pixel scale, existing satellite product validation sys-
tems have lower quality albedo/BRDF retrieval of snow
surface compared with vegetation surface[4,5]. This phe-
nomenon is due to two main reasons. First, the BRDF
models used in the retrieval cannot present directional
reflectance distribution over snow and vegetation[4]. Sec-
ond, due to the high reflectance of both snow and cloud,
it is more difficult to remove contamination from clouds
in reflectance retrieval over snow than vegetation. We
evaluate the simulation ability of snow surface reflectance
of several current BRDF models by considering reports
on the lower retrieval quality of BRDF/albedo over snow
than vegetation. The simulation results provide com-
prehensive knowledge of snow surface reflectance in the
hemisphere space. Models can also be selected accord-
ing to the evaluation report. Finally, the quantified
coefficients of models can serve as a background for fu-
ture snow BRDF modeling projects.

Semi-empirical BRDF models describe the surface
BRDF with linear or nonlinear form. Among these, the
Ross-Li, Roujean, and modified Rahman models are used
in current satellite albedo/BRDF algorithms. We chose
them to fit the in situ measured snow surface reflectance
data. The evaluation results can be used as feedback in
future retrieval projects. The Walthall and Staylor mod-
els are also evaluated in this work. The Walthall model
can easily fit in the algorithm due to its simple linear
form. The Staylor model is generally formed for desert
surfaces that are similar to the flat, optically thick snow
medium[6].

The linear Ross–Li model is used in moderate-
resolution imaging spectroradiometer (MODIS) albedo/

BRDF products[7,8]. It can be expressed in Eq. (1) be-
low:

R(λ, θi, θ) = fiso(λ)+fvol(λ)kvol(θi, θ)+fgeo(λ)kgeo(θi, θ),
(1)

where R is the surface bidirectional reflectance; θi and θ
denote the illuminating and view directions, respectively;
λ is the wavelength; and fiso, fvol, and fgeo are the three
coefficients that have to be determined by fitting the ob-
servations, respectively. Detailed expressions of the two
kernels kvol and kgeo can be found in literature[9,10].

The modified Walthall model[11] is a four-coefficient
(a, b, c, and d) linear model based on empirical consid-
erations with the form:

R = a(θ2
i + θ2) + bθ2

i θ
2 + cθiθ cosϕ + d, (2)

where ϕ is the relative azimuth angle.
The Roujean model[12] is a three-coefficient (k0, k1,

and k2) linear model used in the polarization and di-
rectionality of the earth’s reflectances (POLDER) algo-
rithm. Kernel f1 estimates the reflectance of a flat sur-
face, whereas f2 attempts an approximation of the radia-
tive transfer within a vegetation canopy, which is similar
to Eq. (3) given by

R(θi, θ, ϕ) = k0 + k1f1(θi, θ, ϕ) + k2f2(θi, θ, ϕ). (3)

The modified Rahman model[13] has been used
in multi-angle imaging spectroradiometer (MISR)
BRDF/albedo algorithm. It is a three-coefficient (r0,
k, and b) nonlinear model expressed as

R(−µ, µ0, ϕ) = r0[µ0µ(µ0 + µ)]k−1

· exp[b · p(Ω)]

(

2 + G − r0

1 + G

)

, (4)

where the Henyey–Greenstein function p(Ω) accounts for
the phase function of scattering elements, and 2+G−r0

1+G

explicitly accounts for the hot spot, µ = cos(θ), and
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µi = cos(θi).
Both snow and desert are regarded as flat, optically

thick media because of the weak absorption caused by
more scattering events internal to the media[6]. Hence,
we tried Staylor model with four coefficients (c1, c2, c3,
and N)[14] to evaluate its capability in capturing snow
BRDF using the expression below:

R(θi, θ, ϕ) =
1/µµi[c1 + c2([µµi/µ + µi])

N ]

2

∫ 1

0

B(µ, µi)µidµ

·

1 + c3(µµi − sin θi sin θ cosϕ)2

1 + c3[(µµi)2 + (1/2)(sin θi sin θ)2]
. (5)

In situ measurements were used to evaluate models
because they provide the most direct observations of sur-
face BRDF[15]. A ground measured data set provided by
solar radiation processes on the East Antarctic Plateau
was used to fit these models[16]. The measurements were
performed using a field-spec pro JR spectroradiome-
ter manufactured by Analytical Spectral Devices, Inc.
(ASD)[17]. This data set had in situ measurements of
snow surface reflectance covering a wavelength ranging
from 350 to 2 400 nm.

We chose in situ data of 450, 550, 650, and 850 nm
for the simulations because most satellite databases pro-
vided BRDF and albedo products in blue, green, red,
and near-infrared (NIR) bands. We used such data to
produce broadband albedo products. In each band, we
observed the azimuth angle every 15◦ from 0◦ to 180◦; we
also viewed the zenith angle every 15◦ from 7.5◦ to 82.5◦.
Figure 1 shows the example of snow surface reflectance
in four bands with solar zenith angle of 56◦. The cho-
sen data were fitted with the selected models using the
SCE-UA optimal method[18] in order to minimize the
root-mean-square error (RMSE) between the outputs of
the models and the measurements.

We did not compare the simulation results and mea-
surements with view angles larger than 80◦ in subsequent
analyses. This is due to the lack of ground measurements
with view zenith angle over 82.5◦, and because BRDF
inversion in remote sensing does not involve observations
in large view angles.

Figure 2 represents the simulation results for ground
measurements in four bands. Outputs from every model
captured the high reflection of snow in the forward di-
rection. Compared with those in Fig. 1, outputs from
the Ross-Li and Roujean models are close to the ground
measurements in the hemisphere region. However, for
the large view zenith angle (viewing close to horizontal,
that is, the external circle in every figure in Fig. 2), these
two models have obvious negative biases. Moreover, the
Rahman and Staylor models have extreme positive biases
for the large view zenith angle.

As the quantitative modeling results, all the
coefficients of the models are listed in Table 1 for future
snow BRDF simulations. Table 1 also present compar-
isons between the fitting results and the measurements
from the four bands, respectively. The RMSE and R2

performances of all the models are better fitted than
the satellite snow BRDF signatures reported in previous
literature[3,4]. However, the performances of the Ross-Li,
Rahman, Roujean, and Walthall models differ slightly.

Fig. 1. Ground measurements of snow surface reflectance.
(a)–(d): Wavelengths of 450, 550, 650, and 850 nm. The po-
lar angle represents the relative azimuth angle. Radii of the
circles (1, 0.8, 0.6, 0.4, and 0.2) indicate the projection of view
direction: radius= 1 − cos(θ).

Fig. 2. Model simulations of snow surface reflectance. First
line to the last: outputs from the Ross-Li, Rahman, Walthall,
Roujean, and Staylor models. First column to the last: wave-
lengths of 450, 550, 650, and 850 nm.

The bias performances of all models are less than 0.0003
in both visible and NIR regions. With the exception
of the Staylor model, all the models have RMSE values
of around 0.02, indicating that they can simulate the
reflectance magnitude well. The R2 performances of the
Ross-Li and Roujean models are between 0.73–0.76 in
the visible bands, and are over 0.81 in the NIR band.
The high relation coefficients indicate that these two
models capture the angle distribution of snow surface
reflectance better than the other models.

The ground measurements we used in the present work
have abundant and well-distributed BRDF samplings.
In this condition, all five models showed high capability
in simulating snow surface reflectance. However, remote
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Table 1. Quantified Coefficients of Models and Comparisons between Ground Measurements and Model
Outputs for Wavelengths of 450, 550, 650, and 850 nm

Wavelength (nm) Model Quantified Coefficients Bias RMSE R2

Ross-Li fiso=0.9700, fvol=0.0998, fgeo=0.0095 0.0001 0.0224 0.8124

Rahman r0=0.8480, k=0.9352, b=0.0824 −0.0004 0.0187 0.7092

450 Walthall a=−0.050, b=0.0912, c=0.0335, d=1.0000 −0.0001 0.0222 0.5872

Roujean k0=0.9719, k1=0.0144, k2=0.2470 0.0000 0.0174 0.7477

Staylor c1=0.0996, c2=8.2805, c3=−0.024, N=2.8874 0.0000 0.0423 0.3295

Ross-Li fiso=0.9726, fvol=0.1015, fgeo=0.0146 0.0001 0.0203 0.7351

Rahman r0=0.8314, k=0.9310, b=0.0981 −0.0005 0.0216 0.7020

550 Walthall a=−0.054, b=0.0942, c=0.0417, d=0.9999 0.0000 0.0256 0.5802

Roujean k0=0.9746, k1=0.0217, k2=0.2602 0.0000 0.0197 0.7519

Staylor c1=0.0965, c2=8.0117, c3=−0.032, N=2.8538 −0.0003 0.0344 0.2421

Ross-Li fiso=0.9580, fvol=0.1093, fgeo=0.0166 −0.0001 0.0214 0.7512

Rahman r0=0.7990, k=0.9226, b=0.1122 −0.0004 0.0225 0.7249

650 Walthall a=−0.072, b=0.1159, c=0.0465, d=0.9999 0.0000 0.0271 0.6005

Roujean k0=0.9605, k1=0.0246, k2=0.2818 0.0000 0.0206 0.7655

Staylor c1=0.0959, c2=7.8137, c3=−0.039, N=2.8494 0.0000 0.0370 0.2541

Ross-Li fiso=0.9010, fvol=0.1094, fgeo=0.0188 0.0001 0.0224 0.8124

Rahman r0=0.7001, k=0.8914, b=0.1506 −0.0004 0.0187 0.7092

850 Walthall a=−0.138, b=0.2010, c=0.0572, d=0.9999 −0.0001 0.0222 0.5872

Roujean k0=0.9030, k1=0.0275, k2=0.3677 0.0000 0.0174 0.7477

Staylor c1=0.0883, c2=6.4735, c3=−0.053, N =2.7315 0.0000 0.0423 0.3298

sensors had difficulty in providing abundant angular
samplings as well as those with a high viewing resolu-
tion. For homogenous surfaces, such as pure snow, a
combination of observations from various sensors can
provide more surface reflectance samplings, resulting in
better retrieval quality.

This work was supported by the National “863” Pro-
gram of China (No. 2009AA122101) and the National
Natural Science Foundation of China (Nos. 40871160
and 60841006).
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